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1. Benefits of multimodal data

Growth of diverse data that incorporate information from multiple sources or modalities

Autonomous Driving, Multimodal Machine Translation, Emotion Recognition, Image Captioning, 
Visual Question Answering (VQA) .…

Motivation
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2. Geometry is Everywhere!

Growth of diverse geometry based data: Social networks, Molecules, Interaction networks, Bio-
medical imaging, 3D shape analysis ….

Motivation
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3. Implicit graphs
Inject geometric information into point cloud to form an implicit graph
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• Most multimodal methods are constrained to the particular cases.
• Limited to prior knowledge and homogeneous data, not useful in generic tasks!

Image from ‘‘Multi-view convolutional neural networks for 3D shape recognition, H. Su, et. al. ’’ ICCV, 2015

Major limitations 
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Data fusion: how to integrate data from heterogeneous modalities?
Translation: how to find correspondences among data in different modalities?

Geometric Multimodal Learning in a practical scenario 

Research direction
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Geometric Multimodal Deep Learning with Multi-Scaled Graph Wavelet Convolutional Network,” M. Behmanesh, P. Adibi, M. S. Ehsani, and J. 
Chanussot, IEEE TNNLS, 2022

Multimodal Multi-scaled Graph Wavelet Convolutional Network (M-GWCN) 

https://github.com/maysambehmanesh/GWCN

Saeed Ehsani Jocelyn ChanussotPeyman AdibiMaysam Behmanesh

M-GWCN

https://github.com/maysambehmanesh/GWCN


Overall objectives:
1- Feature learning in each modality by exploring various localities
2- Take advantages of complementary information provided by different modalities 

M-GWCN

Challenges:
• Intra-modality representation in the graph domain of each modality
• Cross-modality correlations among various modalities
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M-GWCN
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From GFT to GWT:
Replacing eigen basis 𝐔 with wavelet basis 𝚿!

Intra-modality representation:

Graph Wavelet Convolution Network (GWCN)
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Scale 1 Scale 2 Scale 3 Scale 4

Scale 1
Scale 2

Scale 3Scale 4Scale 5

Scale 6

M-GWCN

Advantages of wavelet basis
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Phase 1: Intra-modality localization
Applying Graph Wavelet Convolution with 𝒮  different scales 
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M-GWCN
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Phase 2: Cross-modality correlations 
1- Feature embedding of each modality based on the graph wavelet of the other one
2- Exploring the point-wise correspondences by learning a permutation matrix

M-GWCN
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Results: Multimodal Implicit Graph-Based Data

Multi-viewMultimodal

M-GWCN
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1. The GWCN model is prone to oversmoothing

2. Limited to data-rich applications, not useful in generic tasks

3. Optimal Transport (OT)-based loss, can be computationally expensive and may not scale well to large-scale 
graphs

Major challenges…
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• Message-passing based approaches are prone to oversmoothing
• Most GNNs are constrained to small scaled graph

Our Goals:
• Avoid structural limitations of the message-passing frameworks
• Facilitate information propagation by using the diffusion equation
• Ensure long-distance communication between nodes

Layer 1 Layer 2 Layer 3 Layer 4

Message-passing

Challenge
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“TIDE: Time Derivative Diffusion for Deep Learning on Graphs,” M. Behmanesh, M. Krahn, and M. Ovsjanikov, ICML, 2023

TIDE: Time Derivative Diffusion for Deep Learning on Graphs

https://github.com/maysambehmanesh/TIDE

Maximilian Krahn Maks OvsjanikovMaysam Behmanesh

TIDE

https://github.com/maysambehmanesh/TIDE


Laplacians and diffusion

In the continuous setting, the diffusion process is described as the solution of the heat equation

Image from GDL-course, Ovsjanikov

= exp −𝑡Δ 𝑢"

𝑢# = ℋ#(𝑢")

𝜕𝑢
𝜕𝑡 = −Δ𝑢

TIDE
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Time-derivative diffusion

Main goal:
Combine the local accuracy with the global information propagation (without oversmoothing)

We propose time-derivative diffusion as a communication mechanism:
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TIDE
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TIDE combines local accuracy with global information propagation by:
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Key idea:
Using learnable time diffusion which allows information propagation on the graph

↳ variable per-channel spatial support
↳ automatically optimized during training

TIDE
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TIDE Architecture 

TIDE
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Results: 
Long Range Communication 

Image and dataset by: Homophily influences ranking of minorities in social networks, Fariba Karimi, Scientific Reports, 2018

TIDE



Results: 
Node Classification

TIDE
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1. GNNs are Limited to data-rich applications, not useful in generic tasks!
2. Lack of generalizable (transfer) learning on graph

1 2

Challenge
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Typical representation learning pipeline

How to learn informative features on unlabeled graph 
(ideally, useful in downstream applications) ? 

Contrastive Learning: powerful feature learning without labels.

Pre-training: feature learning Downstream application

Research direction 
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Major challenges:
• GCL allocates negative pairs uniformly, regardless of their proximity to the true positive.

Our Goals:
• How to integrate proximity information in the contrastive loss?

𝐟#
𝐟𝒊%

𝐟𝒂

𝐟𝒋% 𝐟𝒊% − 𝐟# ≫ 𝐟𝒋% − 𝐟#  

𝜋+,- 𝑎, 𝑖 = 1   and  𝜋+,- 𝑎, 𝑗 = 1 

Challenge
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“Graphs Smoothed Graph Contrastive Learning via Seamless Proximity Integration,” M. Behmanesh, and M. Ovsjanikov, arxiv, 2024

SGCL: Smoothed Graph Contrastive Learning via Seamless Proximity Integration

https://github.com/maysambehmanesh/SGCL

Maks OvsjanikovMaysam Behmanesh

SGCL

https://github.com/maysambehmanesh/SGCL


Our Intuition:
Going beyond simple binary categorization of positive and negative points

SGCL

Π+,! ∈ 0,1 -×-	

Π012 ∈ 0,1 -×-	
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Our Intuition:
Going beyond simple binary categorization of positive and negative points

Π+,! ∈ 0,1 -×-	 ;Π+,! ∈ [0,1]-×-	

Π012 ∈ 0,1 -×-	 ;Π012 ∈ [0,1]-×-	

SGCL
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Question:
How can proximity information be effectively incorporated into contrastive loss?

Input:        
binary matrix Π ∈ {0,1}(×(

SGCL
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Our Intuition:
Applying a smoothing approach for graph

Smoothing involves iteratively updating node values based on the values of their neighboring 
nodes

Input:        
binary matrix Π ∈ {0,1}(×(

SGCL

Output: 
smooth matrix 8Π ∈ 0,1 (×(
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SGCL – Architecture 

Contrastive Loss: 

𝐂(4,6) : normalized cosine similarity between the embeddings

SGCL
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Results: Node Classification 

SGCL
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Results: Graph Classification 

SGCL
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Large Scaled Graph Matching

Ongoing Projects……



Complexity: Optimal Transport (OT)-based loss, (like GWD) can be computationally expensive
Scalability: OT-based methods may not scale well to large-scale graph datasets

𝐗! 𝐗! 𝐏!,#𝐗!

Challenges

ü Large scaled graph matching with learned features
ü Transferable functional maps for graph matching 36



1- Large-scale multimodal data

2- Multimodal time-varying data 

3- Applications in practical domains (multimodal sentiment analysis, multimedia retrieval, visual question 

answering …)

Future Projects…
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Thank You For Your Attention

Questions?
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