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Benefits of multimodal data
Geometry processing
Graph multimodal learning

Challenges and innovative methods
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Motivation

1. Benefits of multimodal data
Growth of diverse data that incorporate information from multiple sources or modalities

Autonomous Driving, Multimodal Machine Translation, Emotion Recognition, Image Captioning,
Visual Question Answering (VQA) ....

a small cat asleep in a pile of stuffed animals.

a kitten sleeps with many stuffed animals on the
bed.

a pile of stuffed animals sitting on top of a bed.
a white and grey tabby kitten sleeping with
stuffed animals.

a cute little kitty laying among stuffed animals.
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Motivation

2. Geometry is Everywhere!

Growth of diverse geometry based data: Social networks, Molecules, Interaction networks, Bio-
medical imaging, 3D shape analysis ....

Social networks Molecules Interaction networks Functional networks Meshes



3. Implicit graphs

Inject geometric information into point cloud to form an implicit graph
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Major limitations

« Most multimodal methods are constrained to the particular cases.

* Limited to prior knowledge and homogeneous data, not useful in generic tasks!
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3D shape model
rendered with 2D rendered our multi-view CNN architecture output c_lass
different virtual cameras images predictions

Image from “Multi-view convolutional neural networks for 3D shape recognition, H. Su, et. al. ” ICCV, 2015



Research direction

Geometric Multimodal Learning in a practical scenario
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Data fusion: how to integrate data from heterogeneous modalities?
Translation: how to find correspondences among data in different modalities?




M-GWCN

Geometric Multimodal Deep Learning with
Multi-Scaled Graph Wavelet Convolutional Network

Maysam Behmanesh, Peyman Adibi, Mohammad Saeed Ehsani, and Jocelyn Chanussot, Fellow, IEEE

Abstract—Multimodal data provide complementary informa-
tion of a natural phenomenon by integrating data from various
domains with very different statistical properties. Capturing the
i 4 ss-modality information of multimodal
ential capability of multimodal learning methods.
-aware data analysis approaches provide these
capabilities by implicitly representing data in various modal-
ities based on their geometric underlying structures. Also, in
many applications, data are explicitly defined on an intrinsic
geometric structure. Generalizing deep learning methods to the
non-Euclidean domains is an emerging research field, which
has recently been investigated in many studies. Most of those
popular methods are developed for unimodal data. In this paper,
a multimodal multi-scaled graph wavelet convolutional network
(M-GWCN) is proposed as an end-to-end network. M-GWCN si-

I ly finds intra dality rep ion by applying the
multiscale graph wavelet transform to provide helpful localization
properties in the graph domain of each modality, and cross-
modality representation by learning permutations that encode
correlations among various modal 1-GWC not limited
to either the homogeneous mod: with the same number of
data, or any prior knowledge indicating correspondences between
modalities. Several semi-supervised node classification experi-
ments have been conducted on three popular unimodal explicit
graph-based datasets and five multimodal implicit ones. The
experimental results indicate the superiority and effectiveness of
the proposed methods compared with both spectral graph domain
convolutional neural networks and state-of-the-art multimodal
methods.

Index Terms—Geometric deep learning, Graph convolution
neural networks, Graph wavelet transform, Multimodal learning,
Spectral approaches

I. INTRODUCTION

by discovering the hidden intra-modality and cross-modality
correlations.

However, although recent multimodal models have been
focused on Euclidean data, there are two major situations in
which data should be processed in non-Euclidean domains.
First, in the cases in which data in various modalities are
implicitly represented based on their geometric structures.
Second, when data are generated in non-Euclidean geometric
domains, and inherently defined for example as a graph.
These applications represent complex relationships and inter-
dependencies among objects [2], including social networks,
citation networks, networks of the spread of epidemic diseases,
e-commerce networks, brain’s neuronal networks, biological
regulatory networks, and so on.

With the emergence of geometric structural data in real-
world applications, many works have investigated generalizing
deep learning methods to the non-Euclidean domains [2], [3].
As the most popular challenges for the graphs domain data,
graph neural networks (GNNs) perform filtering operations
directly on the graph via the graph weights [3] and graph
convolutional networks (GCNs) learn the local meaningful
stationary properties of the input signals through specifically
designed convolution operator on graphs [4]. However, com-
plex geometric structures in graphs can be encoded with
more powerful mathematical tools in many spatial or spectral
graph-based methods [5]. Nevertheless, most of these popular
methods are developed for unimodal data and have difficulties
coping with multimodal problems.

One of the remarkable deficiencies of the previous mul-
timodal data analysis methods is their limitation to com-

Multimodal Multi-scaled Graph Wavelet Convolutional Network (M-GWCN)
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Saeed Ehsani

Maysam Behmanesh Peyman Adibi Jocelyn Chanussot

https://github.com/maysambehmanesh/GWCN

Geometric Multimodal Deep Learning with Multi-Scaled Graph Wavelet Convolutional Network,” M. Behmanesh, P. Adibi, M. S. Ehsani, and J.
Chanussot, IEEE TNNLS, 2022


https://github.com/maysambehmanesh/GWCN

M-GWCN

Overall objectives:

1- Feature learning in each modality by exploring various localities

2- Take advantages of complementary information provided by different modalities
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Inputs

Phasel: Intra-modality localization

Phase2: Cross-modality correlation

Phase3: Node classification

Challenges:

* Intra-modality representation in the graph domain of each modality
* Cross-modality correlations among various modalities




M-GWCN

Intra-modality representation:

Graph Wavelet Convolution Network (GWCN)

From GFT to GWT:
Replacing eigen basis U with wavelet basis ¥
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Advantages of wavelet basis
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M-GWCN

Phase 1: Intra-modality localization

Applying Graph Wavelet Convolution with |S| different scales
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M-GWCN

Phase 2: Cross-modality correlations

1- Feature embedding of each modality based on the graph wavelet of the other one
2- Exploring the point-wise correspondences by learning a permutation matrix

Y i e e e e e S e 3 2
(K)
L e ate o Hy
- 1
: ¢4 O s * «— 1
|« «0 : g "--lg —® * " :
- H,(:f) —l’: 24 ’ » |
! o e N ' (K) > (K)
! ¢ . l']m Hm
1
: gm . - :
0 1 0 0 O N
0 0 0 1 0 ~ (K) — > Z
_ -1N\pT (K) W > Max —P» Eém
P,.=10 0 0 0 1 Hm,e - Pm,e (lpe,see,slpe,s)Pm,eHm ﬁ ( m
1.0 0 0 0 oy
0O 1 0 0
P e
: o Class 1
: - Class 2
| |
* - oS
He -’I 2o Class 6
: o.008
1
1
\t J/

13



M-GWCN

Results: Multimodal Implicit Graph-Based Data

Multimodal Multi-view
Method Caltech NUS Method Caltech101-7  Caltech101-20 MNIST
Co (pos) 7odell 5180 f\ﬁfgﬁ :92.7289ii 18(;:_33 7736%579f 111%46_33 gi'ggige_i
. -m . -2 J. C-2 . e~
g&g\%’\fneg) 73408 8830§3f20f2 MULDA 92.65+8¢-3  82.20+11e-3  95.2345e-3
S MULDA-m 92.59+410e-3 82.17+6e-3 95.12+4e-3
m-1.5D 8d.1x14 83213 MvMDA 92.65+8¢-3  80.50+13e-3  93.78+9e-3
m~-LSJD 88.5t1.6  87.2+1.1 OGMA 95.01+5¢e-3  86.00+10e-3  96.09+6e-3
MZ2CPC-u 84.8+0.7  86.4+0.3 OMLDA 94.98+5¢-3 86.85+10e-3  95.71+6e-3
M-GWCN 90.6+0.4  89.2+0.8 OMvVMDA 94.71+7e-3 82.28+10e-3  95.99+6e-3
MZ2CPC-p 94.8341.1 86.44+1.1 -
MV-GWCN-1 95.25+1.3 87.83+0.8 96.45+1.4
MV-GWCN-2 96.23+0.7 88.46+1.1 97.21+0.7
& A & No. No. data
N el o - Dataset Type modalities  samples No. classes
’:% ‘cat' 'water' 'macro’ Caltech multimodal 2 1474 7
2 o 'sea’ ‘explore’ flower! NUS multimodal 2 6000 7
:;?, Wai};;;ﬁton : ;1031 ﬂ::zrs Caltech-101-7 multi-view 6 1 474 7
5 Caltech-101-20  multi-view 6 2386 20
D E k MNIST multi-view 6 2000 10
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Major challenges...

1. The GWCN model is prone to oversmoothing

2. Limited to data-rich applications, not useful in generic tasks

3. Optimal Transport (OT)-based loss, can be computationally expensive and may not scale well to large-scale
graphs

15



Challenge

* Message-passing based approaches are prone to oversmoothing
*  Most GNNSs are constrained to small scaled graph
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Our Goals:

 Avoid structural limitations of the message-passing frameworks
* Facilitate information propagation by using the diffusion equation
 Ensure long-distance communication between nodes
16



TIDE: Time Derivative Diffusion for Deep Learning on Graphs

Maysam Behmanesh " ! Maximilian Krahn

Abstract

A prominent paradigm for graph neural networks
is based on the message-passing framework. In
this framework, information communication is
realized only between neighboring nodes. The
challenge of approaches that use this paradigm is
to ensure efficient and accurate long-distance com-
munication between nodes, as deep convolutional
networks are prone to oversmoothing. In this pa-
per. we present a novel method based on time
derivative graph diffusion (TIDE) to overcome
these structural limitations of the message-passing
framework. Our approach allows for optimizing
the spatial extent of diffusion across various tasks
and network channels, thus enabling medium and
long-distance communication efficiently. Further-
more, we show that our architecture design also
enables local message-passing and thus inherits
from the capabilities of local message-passing
approaches. We show that on both widely used
graph benchmarks and synthetic mesh and graph
datasets, the proposed framework outperforms
state-of-the-art methods by a significant margin.

1. Introduction

Designing efficient and scalable architectures for learning
on graphs is a central problem in machine learning with
applications in a broad range of disciplines, including data

12

Maks Ovsjanikov !

(see, e.g., (Zhou et al., 2020; Wu et al., 2020) for recent
surveys), ranging from spectral methods, spatial or con-
volutional designs, recurrent graph neural networks, or
graph auto-encoders as well as many other hybrid tech-
niques. A particularly prominent and widely-used category
of approaches is given by the convolutional graph neural
networks, and especially those based on message-passing,
following the design introduced in (Kipf & Welling, 2017)
and extended significantly in many follow-up works, e.g..
(Lietal., 2018b; Zhuang & Ma, 2018; Chamberlain et al.,
2021b; Thorpe et al., 2021).

The key strengths of convolutional graph neural networks,
as introduced in (Kipf & Welling, 2017), include their sim-
plicity and computational efficiency, their ability to be com-
posed with other neural networks as well as their ability to
generalize across different graphs (i.e., learning weights that
could be applied on unseen graphs). As a result, the orig-
inal GCN approach (Kipf & Welling, 2017) is still highly
effective and is widely used in many applications.

Nevertheless, a prominent limitation of message-passing ap-
proaches, such as GCN and related methods is oversmooth-
ing, which implies that such networks tend to be difficult
to train beyond a small number of layers (Oono & Suzuki,
2019). Furthermore, since typical message-passing oper-
ators only ensure communication between nodes within a
1-hop neighborhood, this means that message-passing ap-
proaches can hinder long-distance information propagation,
which can limit their utility in scenarios, where such long-
range communication is important.

TIDE: Time Derivative Diffusion for Deep Learning on Graphs

Maximilian Krahn

Maysam Behmanesh

Maks Ovsjanikov

https://github.com/maysambehmanesh/TIDE

“TIDE: Time Derivative Diffusion for Deep Learning on Graphs,” M. Behmanesh, M. Krahn, and M. Ovsjanikov, ICML, 2023


https://github.com/maysambehmanesh/TIDE

TIDE

Laplacians and diffusion
In the continuous setting, the diffusion process is described as the solution of the heat equation

L Basic linear PDE

a_u — —Au L defined on surfaces via the Laplace-

at Beltrami operator A

> implemented & well-studied on many domains

diffusion of a point value B

ur = Hy(uo)
= exp(—tA) u,
H¢ @ Heat operator

=000 =002 T=0l
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TIDE

Time-derivative diffusion

Main goal:
Combine the local accuracy with the global information propagation (without oversmoothing)

We propose time-derivative diffusion as a communication mechanism:

ou _
ot

—Au - u; = Hy(ug) = exp(—tL)u — ~ %1y, = Lexp(—tL) u
0 ot t 0

TIDE combines local accuracy with global information propagation by:

LTPE(U) = o(T,(W)W®)) = g (L exp(—t, L)U W)

19



TIDE

Key idea:
Using learnable time diffusion which allows information propagation on the graph

l, variable per-channel spatial support
l, automatically optimized during training
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TIDE

Uout — UWout
Learned W,,,;

Block K

TIDE Architecture
Uin < UWin Block 1 T Blockk |
Learned W;,
" Precompute | (Rl
Laplacian L L£IDE U)

Eigenbasis ®
Eigenvalues A

Learned t per-channel (TIDE-m) or a
single t for all channels (TIDE-s)
and W®) and scaler parameters @ and 8

Diffusion block =

Computing diffusion H, (L)

—tldo

T,(U) = L® ([z-th‘ O PTu— a(PTu) + fLu
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Results

Long Range Communication
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TIDE

Results:
Node Classification

Model Cora Citeseer Pubmed CoauthorCS  Computer Photo Ogbn-arxiv
GCN (Kipf & Welling, 2017) 83.30+0.36  68.23+091 76.78+0.31 90.17£0.50  81.01+0.65 91.71+x0.67 65.91+0.12
GAT (Velickovic et al., 2017) 81.83+£0.42  69.19+0.53 75.49+0.43 90.15+£0.35  80.25+0.52 91.57+0.41 54.23+0.22
GRAND (Chamberlain et al., 2021b)  80.71£0.86  68.06+£0.18 74.61+0.25 90.59+0.21  72.96+0.49 84.17+0.34 59.29+0.12
GCNII (Chen et al., 2020) 79.94 £ 1.11 70.27+0.32 76.59+0.7  84.27+0.80  32.63+8.6 = 57.41+£3.6  49.87+0.37
ACM (Luan et al., 2022) 81.83+0.12  69.03+0.02 73.3x0.63  91.50+0.13  77+0.65 92.42+0.29 66.23+0.42
DiffusionNet (Sharp et al., 2022) 80.96+0.50  70.00£0.91 73.09+0.15 89.52+0.22  74.72+0.66 87.17+£0.26 54.79+0.16
TIDE-m 84.47+0.43  70.32+0.68 77.59+0.04 89.86+0.30  82.11+0.03 91.33x0.47 67.86+1.10
TIDE-s 84.31£0.36  70.24+0.80 77.24+0.62 90.21+0.12  83.01+0.02 92.06+0.51 68.43+0.35

23



Challenge

1. GNNs are Limited to data-rich applications, not useful in generic tasks!

2. Lack of generalizable (transfer) learning on graph

24



Research direction

Typical representation learning pipeline

Contrastive Learning: powerful feature learning without labels.

View Generator 1 - Encoder
L% e

[ Contrastive Loss ] E [ Classification Loss ]
J TN View 2 w NRR E
@ KeyNode l .I]I]I e | I I
©  Other Node . i
O Masked Node L !

() Unsupervised

() supenised J \]\\
—

Original Graph

s, v
ety \ N
/ N \ £

“7 Dropped Node View Generator 2 Encoder Classifier
) | e e mmmo -
Y ¢ Y 4
Pre-training: feature learning Downstream application

How to learn informative features on unlabeled graph

(ideally, useful in downstream applications) ? 2
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Challenge

Major challenges:
» GCL allocates negative pairs uniformly, regardless of their proximity to the true positive.

5 = ox2.49)

If7 — £51 > ||f; — £+

GV = x9, A0 Tneg (a,i) =1 and Tneg (a,j) =1

Our Goals:

* How to integrate proximity information in the contrastive loss? -



SGCL

SGCL: Smoothed Graph Contrastive Learning via Seamless Proximity Integration

Smoothed Graph Contrastive Learning via Seamless Proximity Integration

Abstract

Graph contrastive learning (GCL) aligns node rep-
resentations by classifying node pairs into posi-
tives and negatives selection process that
typically relics on establishing correspondences
within two augmented graphs. The conventional
GCL approaches incorporate negative samples
uniformly in the contrastive loss, resulting in
the equal treatment negative nodes, regardless of
their proximity o the true positive. In
per, we present a Smoothed Graph Contrastive
Leaming model (SGCL), which leverages the
geomeltric structure of augmented graphs (o in-
jeel proximity information associated with posi-
tive/negative pairs in the contrastive loss, thus sig-
nilicantly regularizing the learning proc
proposed SGCL adjusts the penaltics assc
with node pairs in the contrastive loss by incor-
porating three distinet smoothing techniques that
result in proximity aware posi ind negatives.
To enhance scalability for large-scale graphs, the
proposed framework incorporales a graph batch-
generaling strategy that partitions the given graphs
into multiple subgraphs, facilitating cflicicnt train-
ing in scparate batches. Through extensive exper-
imentation in the unsupervised selling on vari-
ous benchmarks, particularly those of large scale,
we demonstrate the superiority of our proposed
framework against recent basclincs.

1. Introduction

Graph Neural Networks (GNNs) (Gilmer et al., 2017; Kipl

Maysam Behmanesh ' Maks Ovsjanikov '

labeling graphs is challenging because they often represent
specialized concepts within domains like biology.

Graph Contrastive Learning (GCL), as a new paradigm of
Self-Supervised Learning (SSL) (Liu ct al., 2023) in the
graph domain, has cmerged 1o address the challenge of
learning meaningful representations from graph-structured
data (Wu et al., 2023; Xic ct al., 2023). They leverage
the principles of s
loss (Li et al., 2019) to form a simplified representation of
graph-structured data without relying on supervised data.

I-supervised learning and contrastive

In a typical GCL approach, several graph views are gener-
ated through stochastic augmentations of the input graph.
Subscquently, representations are learned by comparing
congruent representations of cach node, as an anchor in-
stance, with its positive/negative samples [rom other views
(Velickovié etal., 2019; Zhu et al., 2020; Hassani & Khasah-
madi, 2020). More spe Ily, the GCL approach initially
captures the inherent semantics of the graph Lo identify the
positive and negative nodes. Then, the contrastive loss cf-
ficiently pulls the representation of the positive nodes or
subgraphs closer together in the embedding space while
simultancously pushing negative ones apart.

Conventional GCL methods follow a straightforward prin-
ciple when di
pairs: pairs of corresponding points in augmented vie
considered positive pairs (similar), while all other pairs are
regarded as negative pairs (dissimilar) (Zhu et al., 2020).
This strategy cnsures that [or cach anchor node in onc aug-
mented view, there ¢
maining nodes in the s
negatives.

inguishing between positive and negative
arc

ists onc positive pair, while all re-
cond augmented view are paired as

iated

In contrast (o the positive pairs, which are reliably as:

Maysam Behmanesh ~ Maks Ovsjanikov

& Welling, 2017; Xu et al., 2019b) have developed rapidly with m)dct Im\'in‘g a sin.lilur semantic, there is a xig.m icant

number ol negative pairs that have the potential for false
negatives. With this strategy, GCL approaches allocate neg-
alive pairs between

by providing the powerlul frameworks for the analysis of
graph-structured data. A significant portion ol GNNs pri-
marily [ocus on (semi-)supervised learning, which requires

https://github.com/maysambehmanesh/SGCL

ws uniformly, while we intuitively

“Graphs Smoothed Graph Contrastive Learning via Seamless Proximity Integration,” M. Behmanesh, and M. Ovsjanikov, arxiv, 2024


https://github.com/maysambehmanesh/SGCL

SGCL

Our Intuition:
Going beyond simple binary categorization of positive and negative points

28



SGCL

Our Intuition:
Going beyond simple binary categorization of positive and negative points

':=> | [0.4,0,0.2,1,0.4,0.6,0.6] |
) 1
; R

i) ﬁ'('ffj)

pos neg

1,05 € [0,1]V*N
ﬁneg € [0,1]V*N
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SGCL

Question:
How can proximity information be effectively incorporated into contrastive loss?

® | ® ®
O o
O ® i ®
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o o o i o
o O O
Graph G = (V,A)
Input:

binary matrix IT € {0,1}*¥
30



SGCL

Our Intuition:
Applying a smoothing approach for graph

Smoothing involves iteratively updating node values based on the values of their neighboring

nodes
® @ L ¢ @ ’ 4 ? ® @ ?
| | | |
O ® o ® ® ® ©
® ® ® o ® o} ® ®
® ® ¢ © o ® ® O
o o o i o > o o i o t oo o
o o} @ O O G o ®
Graph G = (V,A) Taubin smoothing Bilateral smoothing Diffusion-based smoothing
Sp(V,L,u=—0.5,t=0.3,K = 6) S5(V,A, 0ppg = 0.1,0,, = Sp(V,A,K = 3,5 = 0.05)
\ )
Y
Input: Output:

binary matrix IT € {0,1}">" smooth matrix IT € [0,1]V*N
31



SGCL

SGCL — Architecture

_____________________________
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SGCL

Results: Node Classification

Model Cora Citeseer Pubmed CoauthorCS Computers Photo
DGI (Velickovic et al., 2019) 76.28+0.04 69.33+£0.14 83.79+0.08 91.63+0.08 71.96£0.06  75.27+0.02
GRACE (Zhu et al., 2020) 81.80+0.19 71.35+0.07 85.86+0.05 91.57+0.14 84.77£0.06  89.50+0.06
MVGRL (Hassani & Khasahmadi, 2020) 84.98+0.11 71.29+0.04 85.22+0.04 91.65+0.02 88.55+0.02  91.90+0.08
BGRL (Thakoor et al., 2022) 80.21£1.14 66.33£2.10 81.78+1.06 90.19+0.82 84.24+1.32  89.56%1.01
GBT (Bielak et al., 2022) 79.32+0.31 65.78+1.33 86.35+0.48 91.87+0.07 90.43+0.18 92.23+0.18
CGRA (Duan et al., 2023) 82.71£0.01 69.23+£1.19 82.15+0.46 91.26%0.27 89.76£0.36  91.54+1.06
GRLC (Peng et al., 2023) 83.50+0.24 70.02+0.16  81.20+0.20 90.36%0.27 88.54+0.23  91.80+0.77
SGCL-T  84.45+0.04 71.26x0.06 84.11+0.08 92.14+0.09  86.81+0.01  92.71+0.05
SGCL-B 85.08+0.12 72.77+0.33 83.67+x0.06 92.16x0.15 88.24+0.05  92.43+0.03
SGCL-D 84.47+0.25 70.32+0.04 85.22+0.02  92.04+0.05 84.98+0.34  90.09+0.11

Model ogbn-arxiv ogbn-products ogbn-proteins

DGI (Velickovic et al., 2019) 67.07%0.5 68.68+0.6 94.11+0.1

GRACE (Zhu et al., 2020) 67.92+0.4 72.10%0.7 94.11+0.2

MVGRL (Hassani & Khasahmadi, 2020)  60.68+0.5 69.90+0.9 93.87+0.3

BGRL (Thakoor et al., 2022) 63.88+0.2 66.23+0.5 92.94+0.3

GBT (Bielak et al., 2022) 69.05%0.3 65.74+0.4 94.07+0.3

~SGCL-T 693005 75.97+0.1 94.64+0.2
SGCL-B 69.24+0.3 74.33£0.4 93.55+0.2
SGCL-D 69.03+0.4 74.150.2 93.19+0.1
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SGCL

Results: Graph Classification

Model IMDB-Binary PTC MUTAG PROTEINS ENZYMES

InfoGraph (Sun et al., 2019) 73.0+0.9 61.7x1.4 89.0+1.1 74.4+0.3 50.2+1.4
GraphCL (You et al., 2020) 71.1+£0.4 63.6+x1.8 86.8+1.3 74.4+0.5 55.1+1.6
MVGRL (Hassani & Khasahmadi, 2020) 74.2+0.7 62.5£1.7 89.7£1.1 71.5+£0.3 48.3£1.2
AD-GCL (Suresh et al., 2021) 71.5£1.0 61.2+14 86.8+1.3 75.0£0.5 42.6x1.1
BGRL (Thakoor et al., 2022) 72.8+0.5 57.4+09  86.0+1.8 77.4+£2.4 50.7+9.0
LaGraph (Xie et al., 2022) 73.7+£0.9 60.8+1.1  90.2+1.1 75.2+40.4 40.9+1.7
CGRA (Duan et al., 2023) 75.6£0.5 65.7£1.8 91.1+2.5 76.2+0.6 61.1+0.9
sGcL-T 752428 64.0+1.6 89.0+2.3  79.4+19 = 65.3%+3.6
SGCL-B 73.2+3.7 62.5+1.8  87.0+£2.8 81.6+2.3 63.7+1.6
SGCL-D 75.8+1.9 62.6+x1.4 86.0+2.6 81.5+2.3 64.3+2.2
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Ongoing Projects...

Large Scaled Graph Matching



Challenges

Complexity: Optimal Transport (OT)-based loss, (like GWD) can be computationally expensive
Scalability: OT-based methods may not scale well to large-scale graph datasets
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v’ Large scaled graph matching with learned features

v" Transferable functional maps for graph matching 36



Future Projects...

1- Large-scale multimodal data

2- Multimodal time-varying data

3- Applications in practical domains (multimodal sentiment analysis, multimedia retrieval, visual question

answering ...)
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Questions?
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