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Machine learning on graphs
Graph Neural Networks (GNNs)
Challenges on GNNs

Innovative methods
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Motivation

Graphs are Everywhere!

Growth of diverse graph based data: Social networks, Molecules, Interaction networks, Bio-

medical imaging ....
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* Implicit graphs

Inject geometric information into point cloud to form an implicit graph
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Graph Neural Networks

* Input: graph-structured data

* Output: function that map graph to learned representation

Node classification

N

Z; = ./I(hi)
: @/O . GNN = Graph classification
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_| Link prediction
z;j = f(h;, h;,e;;)

* How to learn representation?

* Message passing mechanism aggregates information from neighbors to update the representation



Graph Neural Networks

* Message Passing mechanism

1. Node x; gathers messages from its neighbors NV (Xx;)

m{” = AGGREGATE({h{":j € ¥ (1)})

2. The representation of x; is updated

l -1 l
h") = UPDATE(h{' ™", m{)

XNi :{{XJ'ENi }



Graph Neural Networks

* Graph Convolutional Network (GCN) Xa
« Node features aggregate using A = A + I c,,,,\(:n,,,,)
X} < Che Xe
H+D = ReLU(AHOWO) .
Xd/ \X

« Aggregation from more distant nodes:

Iteratively performing the message-passing and update node features (3-layer GCN)

H® = ReLU(A ReLU(A ReLU(AXWM)W®@))W®)

Useful for homophilic graphs !



Challenges...

Questions:
1- How to apply GCN on heterophilic graphs?
2- How to have long-distance communication between nodes with GCN?

GCN with higher-order layers
The models is prone to oversmoothing

complete heterophily complete homophily
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Challenge

* Message-passing based approaches are prone to oversmoothing
* GNNs have structural limitations to apply on large-scale or heterophilic graphs!
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Our Goals:

* Avoid structural limitations of the message-passing frameworks
* Facilitate information propagation by using the diffusion equation
* Ensure long-distance communication between nodes



TIDE

TIDE: Time Derivative Diffusion for Deep Learning on Graphs

“TIDE: Time Derivative Diffusion for Deep Learning on Graphs,

TIDE: Time Derivative Diffusion for Deep Learning on Graphs
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Abstract

A prominent paradigm for graph neural networks
is based on the message-passing framework. In
this framework, information communication is
realized only between neighboring nodes. The
challenge of approaches that use this paradigm is
toensure efficient and accurate long-distance com-
munication between nodes, as deep convolutional
networks are prone to oversmoothing. In this pa-
per, we present a novel method based on time
derivative graph diffusion (TIDE) to overcome
these structural limitations of the message-passing
framework. Our approach allows for optimizing
the spatial extent of diffusion across various tasks
and network channels, thus enabling medium and
long-distance communication efficiently. Further-
more, we show that our architecture design also
enables local message-passing and thus inherits
from the capabilities of local message-passing
approaches. We show that on both widely used
graph benchmarks and synthetic mesh and graph
datasets, the proposed framework outperforms
state-of-the -art methods by a significant margin. ©

1. Introduction

Designing efficient and scalable architectures for learning
on graphs is a central problem in machine learning with
applications in a broad range of disciplines, including data

(see, e.g.. (Zhou et al., 2020; Wu et al., 2020) for recent
surveys), ranging from spectral methods, spatial or con-
volutional designs, recurrent graph neural networks, or
graph auto-encoders as well as many other hybrid tech-
niques. A particularly prominent and widely-used category
of approaches is given by the convolutional graph neural
networks, and especially those based on message-passing,
following the design introduced in (Kipf & Welling, 2017)
and extended significantly in many follow-up works, e.g.,
(Lietal., 2018b; Zhuang & Ma, 2018; Chamberlain et al.,
2021b; Thorpe et al., 2021).

The key strengths of convolutional graph neural networks,
as introduced in (Kipf & Welling, 2017), include their sim-
plicity and computational efficiency, their ability to be com-
posed with other neural networks as well as their ability to
generalize across different graphs (i.e.. learning weights that
could be applied on unseen graphs). As a result, the orig-
inal GCN approach (Kipf & Welling, 2017) is still highly
effective and is widely used in many applications.

Nevertheless, a prominent limitation of message-passing ap-
proaches, such as GCN and related methods is oversmooth-
ing, which implies that such networks tend to be difficult
to train beyond a small number of layers (Oono & Suzuki,
2019). Furthermore, since typical message-passing oper-
ators only ensure communication between nodes within a
1-hop neighborhood, this means that message-passing ap-
proaches can hinder long-distance information propagation,
which can limit their utility in scenarios, where such long-
range communication is important.

O
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TIDE

Key idea: ensure information propagation using the diffusion equation

In the continuous setting, the diffusion process is described as the solution of the heat equation

l, Basic linear PDE

ou l, Defined on graph via the Laplace-Beltrami
grap P
0t —Au operator A

l, Implemented & well-studied on many domains

diffusion of a point value

ur = He(uo)
= exp(—tA) ug
H;: : Heat operator

(=0001 t=002 t=01 i=1

11



TIDE

Time-derivative diffusion

Main goal:
Combine the local accuracy with the global information propagation (without oversmoothing)

We propose time-derivative diffusion as a communication mechanism:

ou _
ot

—Au > u; = H(ug) = exp(—tL) ug — —% = Lu; = Lexp(—tL) u,

TIDE combines local accuracy with global information propagation by:

LTPE() = o(T,(WW®) = g(L exp(—t; L)U W)

12



TIDE

Key idea:
Using learnable time diffusion which allows information propagation on the graph

, small t, the support is local and the output is concentrated at the center node
, larger t, the spatial support increases, facilitating distant communication between nodes
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TIDE Architecture

U;,, — UW; === = =====- Uy <— UW,
n — Block 1 Block k Block K ouL out
Learned W, Learned W,,,;
Ve ™
:_ o 1;1_'61‘;]_]]]);1'[_6_ ) _-i " T i Computing diffusion H, (L) i
1
E LaplacianL ! LEPE (1) I‘ i ) i
c - e —EAD
: Elgeﬂbf‘l‘ﬂs (fl i Lezllmed t per-channel (TIDE-m) or a i T.(U) =L@ | |-t | © ®Tu — a®Tu | + fLu i
| Sl ! single t for all channels (TIDE-s) | :
L : (k) caler par . I
L : L and W %) and scaler parameters a and 8 Diffusion block e :
./
Two variants of TIDE:

TIDE-m: learn t per-channel
TIDE-s: learn a single t for all channels
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Results

Long Range Communication
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TIDE

Results:
Node Classification

Scale Dataset #Nodes #Edges #Feature #Class #CC h%  Avg. N.D. Diameter
Small Cpra 2,708 5,429 1,433 78 80.4 4.08 19
Citeseer 3,327 4,732 3,703 438 73.5 3.47 28
PubMed 19,717 44,324 500 1 80.2 4.5 18
Medium CoauthorCs 18,333 81,894 6.805 1 80 8.93 24
Computers 13,381 245,778 767 314 77.7 36.74 10
Photos 7,487 119,043 745 136 82.7 31.8 11
ogbn-arxiv 169,343 1,166,243 128 40 1 65.4 13.67 23
#CC: Number of connected components, h% : Homophily rate, Avg. N.D: Average node degrees
Model Cora Citeseer Pubmed CoauthorCS  Computer Photo Ogbn-arxiv
GCN (Kipf & Welling, 2017) 83.30+£0.36  68.23x091 76.78+0.31 90.17+£0.50  81.01£0.65 91.71+0.67 65.91+0.12
GAT (Velickovi€ et al., 2017) 81.83+0.42 69.19+0.53 75.49+0.43 90.15+£0.35 80.25+0.52 91.57+041 54.23+0.22
GRAND (Chamberlain et al., 2021b) 80.71£0.86  68.06£0.18 74.61+£0.25 90.59+0.21 72.96+£0.49 84.17£0.34 59.29+0.12
GCNII (Chen et al., 2020) 7994 +1.11 70.27+0.32 76.59+0.7 84.27+0.80  32.63+8.6 5741+3.6  49.87+0.37
ACM (Luan et al., 2022) 81.83+£0.12 69.03+£0.02 73.3+0.63 91.50+0.13 77+0.65 92.42+0.29 66.23+0.42
DiffusionNet (Sharp et al., 2022) 80.96+0.50  70.00+£0.91 73.09+0.15 89.52+0.22  74.7240.66 87.17+0.26 54.79+0.16
TIDE-m 84.47+0.43  70.32+0.68 77.59+0.04 89.86+0.30 82.11+0.03 91.33x047 67.86+1.10
TIDE-s 84.31+0.36 70.24+0.80 77.2440.62 90.21+0.12 83.01+0.02 92.06+£0.51 68.43+0.35

16



TIDE

Results:
Node Classification on graphs with different homophily rates

#Node

Graph #Nodes #Edges featues #Class Class type h

Chameleon 2277 36,101 2.325 5 Wiki pages 023

Actor 7.600 29926 931 5 Actors 1n movies (.22

Cornell 183 295 1,703 5 Web pages 0.3

Texas 183 309 1,703 5 Web pages 0.11

Wisconsin 251 499 1,703 5 Web pages 0.21

Genius 421,961 084,979 12 2 marked act. 0.618

Twitch-gamers 168,114 6,797,557 7 2 mature content 0.545

Snap-patents 2923922 13975, 788 269 5 time granted 0.073
Model Chameleon Actor Cornell Texas Wisconsin Genius Twitch-gamer  Snap-patents
GCN 45.18+0.62 29.38+0.5 43.24+1.3 63.51+1.9 54.9249.7 80.87£0.13  60.6020.19  36.84+0.37
GAT 44.96+62  28.88+1.0 54.05+1.1 62.1620.08 55.88+1.4 79.8320.23  53.0840.16  38.76+0.75
GRAND 50.33£0.47 35.00+£0.28 55.41+19 67.62+1.9 64.86+1.3 82.47+0.08 59.85+0.03 38.89+0.42
DiffusionNet 53.84%1.1 34444033 56.76x0.6 62.1620.0 62.78+2.8 82.59+0.12 55.7241.6 30.69+0.014
TIDE-m 5208+1.1 36.18+0.47 58.11+1.9 64.86+1.5 69.61+1.4 83.03:0.06 60.81+0.04  40.56+1.7
TIDE-s 51.75£0.47 36.64£0.47 59.46x1.9 63.81£1.9 68.63x1.4 83.01£0.06 60.40£0.13  40.75+0.58

17



Challenge

1. GNNs are Limited to data-rich applications, not useful in generic tasks!

2. Lack of generalizable (transfer) learning on graph

Classiffcation
) N ﬁ % o |
i = “\ P =
T Sl ool kil Lidgrs
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Research direction

Typical representation learning pipeline

Contrastive Learning: powerful feature learning without labels.

. View Generator 1 g - Encoder
a, - .
[ Supervised _| NERNAY,
| r ‘-:"r"‘ _} I I I
Original Graph ) t J -"'-'3-.n

S|m|lar113|r Lass [ Contrastive Loss ]

\\\ View 2 \\\
D Cther Node
D Masked Node L

Dropped Node wew Generatar 2 Encoder

Pre-training: feature learning Downstream application

How to learn informative features on unlabeled graph
(ideally, useful in downstream applications) ?

19



Challenge

Major challenge:
* GCL allocates negative pairs uniformly, regardless of their proximity to the true positive.

G = . A9)

£ —£41 > || — £

EEJ = (XE),AEJ) T[neg (Cl, l) = 7Tneg (Cl,j) =1
We expect:
Our Goal: 0 <Tlpeg (a,j) < Theg (a,i) <1

* Integration proximity information in the contrastive loss. .



SGCL

Smoothed Graph Contrastive Learning via Seamless Proximity Integration

Smoothed Graph Contrastive Learning via Seamless Proximity
Integration

E Maks Ovsjanikov
LIX, Ecole polytechnique, IP Paris LIX, Ecole polytechnique, IP Paris
behmanesh@lix.polytechnique.fr maks@lix.polytechnique.fr

Abstract

Graph contrastive learning (GCL) aligns node representations by classifying node
pairs into positives and negatives using a selection process that typically relies on

blishing corr dences within two i graphs. The conventional
GCL approaches incorporate negative samples uniformly in the contrastive loss,
resulting in the equal treatment of negative nodes, regardless of their proximity
to the true positive. In this paper, we present a Smoothed Graph Contrastive
Learning model (SGCL). which leverages the geometric structure of augmented
graphs to inject proximity information associated with positive/negative pairs
in the contrastive loss, thus significantly regularizing the learning process. The
proposed SGCL adjusts the penalties associated with node pairs in contrastive
loss by incorporating three distinct smoothing techniques that result in proximity-
aware positives and negatives. To enhance scalability for large-scale graphs, the
proposed framework incorporates a graph batch-generating strategy that parti-
tions the given graphs into multiple subgraphs. facilitating efficient training in
separate batches. Through extensive experimentation in the unsupervised setting
on various benchmarks, particularly those of large scale, we demonstrate the
superiority of our proposed framework against recent baselines. The implemen-
tation is available at https://github. com/maysambehmanesh/SGCL.

1 Introduction

Graph Neural Networks (GNNs) [1-3] have developed rapidly by providing powerful frameworks
for the analysis of graph-structured data. A significant portion of GNNs primarily focus on (semi-)
supervised learning, which requires access to abundant labeled data [2. 4. 5]. However. labeling
graphs is challenging because they often rep specialized pts within domains like biology.

Graph Contrastive Learning (GCL). as a new paradigm of Self-Supervised Learning (SSL) [6] in the
graph domain, has emerged to address the challenge of learning meaningful representations from
graph-structured data [7, 8]. They leverage the principles of self-supervised learning and contrastive
loss [9] to form a simplified representation of graph-structured data without relying on supervised
data.

In a typical GCL approach. several graph views are erated through stochastic aug ions of
the input graph. Subsequently, representations are learned by comparing congruent representations

Maysam Behmanesh ~ Maks Ovsjanikov

https://github.com/maysambehmanesh/SGCL

“Graphs Smoothed Graph Contrastive Learning via Seamless Proximity Integration,” M. Behmanesh, and M. Ovsjanikov, LoG, 2024
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SGCL

Our intuition:
Going beyond simple binary categorization of positive and negative points

22



SGCL

Our intuition:
Going beyond simple binary categorization of positive and negative points

23



SGCL

Question:
How can proximity information be effectively incorporated into contrastive loss?

[ | ® ®
® ®
e 8 i ®
[ ® ®
o ° i o
® o @
Graph G = (V,A)
Input:

binary matrix IT € {0,1}V*V
24



SGCL

Our Intuition:
Applying a smoothing approach for graph

Smoothing involves iteratively updating node values based on the values of their neighboring

nodes
® O . ® ® ® - -
| | ’ | ¢ | ¢
@ @ @ ® ¢ ® -
® ® @ ® - & ® &
® ® @ ® @ ® ® -
© oo i o > o o i o i > o o i
@ o @ ® - ® ® &
Graph G = (V,A) Taubin smoothing Bilateral smoothing Diftusion-based smoothing
Sp(V,L u=—05,1=0.3K = 6) S5(V.A, 0, = 01,6, = 2) Sp(V,A K = 3,5 = 0.05)
\ )
Y
Input: Output:

binary matrix I1 € {0,1}">" smooth matrix IT € [0,1]V*N
25



SGCL

Smoothing approaches:

Smoothing involves iteratively updating node values based on the values of their neighboring
nodes

1. Taubin smoothing

VD = (1 4 7L) ((l + ,LLL)V(k)), u<0,7>0,andu < —1

2. Bilateral smoothing

~ Z N (i W(lr])v ..
g, =20 " where w(i, ) = exp (—
Zjej\{‘k(i) w(i,j)

dspa(L)) dint(irj))

2 2

3. Diffusion-based smoothing

v D - vl-(k) +7 Vi(k), where Vi(k) = Djen Vj

l
26



SGCL

SGCL - Architecture
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SGCL

Feature space analysis

Dirichlet energy E(X) = X"LX = %Zi, j illx: — xj”2 measures the smoothness of the signal X
over the graph

Disparity measure: ~00s & w0
Ddfspari{v(fﬂ) I E I Z ﬁaj I E I Z ALJ E’-O-IS
nird , JE EU!”H mer )E Eﬂﬂfr E —0.20
2 ) —0.25
where 4;; = au || — X; I
v Alower disparity value is better RN A
Model Cora Citeseer Pubmed  CoauthorCS Computers Photo ogbn-arxiv
GCL (GRACE) 0.66x0.05 0.63+0.02 0.51+0.03  0.58+0.02  0.64+0.03  0.65+0.03  0.56+0.03
SGCL-T 0.49+0.05 0.58+0.05 0.50+0.01  0.53+0.03  0.56+0.01 0.60+0.05 0.51+0.02
SGCL-B 0.63£0.03  0.51+£0.05 0.49+0.02  0.52+0.01 0.52£0.05 0.59+0.02  0.48+0.05
SGCL-D 0.47+0.02 0.54+0.03 0.49+0.01 0.46+£0.05  0.55+0.05 0.43+0.03 0.45+0.04

28



SGCL

Results: Node Classification

Model Cora Citeseer Pubmed CoauthorCS Computers Photo
DGI [10] 82.3+0.6 71.8+0.7 76.8+0.6 92.15+0.63 83.954047 91.61+0.22
GRACE [11] 83.3+0.4 72.1+0.5 73.63+0.20 91.12+0.20 80.53+0.35 92.78+0.45
MVGRL [12] 83.11+0.12 73.320.5 84.27+0.04 92.11+0.12 87.5240.11 91.74+0.07
BGRL [21] 83.77+£0.57 73.07£0.06 84.62+0.35 03.31+0.13 90.34+0.19 03.17+0.3
G-BT [22] 83.63x0.44  72.95+£0.17 84.52+0.12 092.95+0.17 88.14+0.33 92.63x0.44
CGRA [23] 83.8+0.4 69.23+1.19 82.8+0.4 02.8+0.5 90.5+0.4 092.4+0.2
GRLC [24] 83.5+0.5 72.6+0.6 82.1+0.4 90.36+0.27 88.54+0.23 92.3+0.5
ProGCL-weight [25] 81.91+0.12 69.24+0.21 84.89+0.04 93.51+0.06 80.2840.15 93.30+0.09
ProGCL-mix [25] 83.71+0.04 68.38+0.3 84.64+0.03 93.67+0.12 80.55+0.16  93.64+0.13
GraphMAE2 [26] 84.5+.0.6 73.440.3 81.4+0.5 - - -
AUGCL [27] - - - - 88.94+0.44 93.43+0.32
GREET [28] 83.81+0.87  73.08+0.84 80.29+1.00 94.65+0.18 87.94+0.35 92.85+0.31
SGCL-T 84332045 74.9440.79 84.25+0.35 02.2540.15 87.21+0.42 03.12+0.7
SGCL-B 84.78+0.3 T74.30+1.4 84.1+0.25 92.33+04 89.75+0.8 93.72+0.12
SGCL-D 84172043  75.72+0.59 85.12+0.3 92.14+0.26 86.11+0.3 02.87+0.6
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SGCL

Results: Node Classification (large scale graphs)

Scale Dataset #Nodes #Edges #Feature #Class #CC h%  Avg. N.D. Diameter
ogbn-arxiv 169,343 1,166,243 128 40 1 65.4
Large ogbn-products 2,449,029 61,859,140 100 47 52,658 80.8
ogbn-proteins 132,534 39,561,252 8 94 1 91
Model ogbn-arxiv ogbn-products ogbn-proteins
DGI [10] 67.07+0.5 68.68+0.6 94.11+0.1
GRACE [11] 67.92+0.4 72.1040.7 94.11+0.2
MVGRL [12] 60.68+0.5 69.90+0.9 93.87+0.3
BGRL [21] 63.88+0.2 66.23+0.5 92.94+0.3
GBT [22] 69.05+0.3 65.74+0.4 94.07+0.3
GraphMAE2 [26]  68.95+0.4 74.3240.5 -
SGCL-T 70.89+0.2 75.97+0.1 94.64+0.2
SGCL-B 70.34+0.4 74.3340.4 03.5540.2
SGCL-D 70.52+0.3 74.1540.2 93.1940.1
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SGCL

Results: Graph Classification

Dataset sraph  Avg. node  Avg. edge #Features #Class

MUTAG 188 17.9 39.6 7 2

PTC-MR 344 14.29 14.69 19 2

IMDB-Binary 1,000 19.8 193.1 l 2

PROTEINS 1,113 39.1 145.6 3 2

ENZYMES 600 32.63 124.3 3 6
Model IMDB-Binary PTC-MR MUTAG PROTEINS ENZYMES
InfoGraph [29] 73.0+£0.9 61.7£1.4  89.0£1.1 74.4+0.3 50.2+1.4
GraphCL [30] 71.1£0.4 63.6+1.8 86.8+1.3 74.4+0.5 55.1+1.6
MVGRL [12] 74.2+0.7 62.5+1.7  89.7+1.1 71.5+£0.3 48.3+1.2
AD-GCL [31] 71.5£1.0 61.2+1.4  86.8+1.3 75.0+0.5 42.6+1.1
BGRL [21] 72.8+0.5 57.4£09  86.0£1.8 77.4+£2.4 50.749.0
LaGraph [32] 73.7£0.9 60.8x1.1  90.2+1.1 75.2+0.4 40.9+1.7
ProGCL-mix [25] 71.6+0.6 - 88.7+1.4 74.5+0.4 -
CGRA [23] 75.6+0.5 65.7x1.8 91.1£2.5 76.2+0.6 61.1+0.9
AUGCL [27] 72.4+0.8 - 89.2+1.0 75.7£0.4 -
SGCL-T 75.2+2.8 64.0£1.6 89.0+2.3 79.4£1.9 65.3+3.6
SGCL-B 73.2+3.7 62.5x1.8  87.0+£2.8 81.6+2.3 63.7£1.6
SGCL-D 75.8+1.9 62.6£1.4  86.0+£2.6 81.5+2.3 64.3+2.2
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Conclusions

1- Most message-passing-based GNNs are prone to oversmoothing
l, TIDE facilitates information propagation using the diffusion equation
l, TIDE ensures long-distance communication between nodes
2- Conventional GCL frameworks allocates negative pairs uniformly, regardless of their proximity

l, SGCL incorporates the geometric structure of graph into a smoothed contrastive loss
l, SGCL intuitively consider proximity information in assigning positive and negative pairs
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Thank You For Your Attention

Questions?

' """..'-':;1.'.' Acknowledgements:

_-'.'.- n'-’.'e rC Part of this work are supported by the ERC Starting Grant No. 758800 (EXPROTEA) and
e ERC Consolidator Grant 101087347 (VEGA).



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

