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• Graphs are Everywhere!

Growth of diverse graph based data: Social networks, Molecules, Interaction networks, Bio-

medical imaging ….

Motivation
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• Implicit graphs

Inject geometric information into point cloud to form an implicit graph
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Motivation
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• Input: graph-structured data

• Output: function that map graph to learned representation

• How to learn representation?

• Message passing mechanism aggregates information from neighbors to update the representation

Graph Neural Networks

Images by: Petar Veličković
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• Message Passing mechanism  

1. Node 𝐱𝑖  gathers messages from its neighbors 𝒩(𝐱𝑖)

𝐦𝑖
(𝑙)

= AGGREGATE({𝐡𝑗
𝑙−1 : 𝑗 ∈ 𝒩(𝑖)}) 

2. The representation of 𝐱𝑖 is updated

𝐡𝑖
(𝑙)

= UPDATE(𝐡𝑖
𝑙−1 , 𝐦𝑖

(𝑙)
)

Graph Neural Networks
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• Graph Convolutional Network (GCN) 

• Node features aggregate using 𝐀 = 𝐀 + 𝐈

𝐇(𝑙+1) = 𝑅𝑒𝐿𝑈 𝐀𝐇(𝑙)𝐖(𝑙)

• Aggregation from more distant nodes:

Iteratively performing the message-passing and update node features (3-layer GCN)

𝐇(4) = 𝑅𝑒𝐿𝑈 𝐀 𝑅𝑒𝐿𝑈 𝐀 𝑅𝑒𝐿𝑈 𝐀𝐗𝐖(1) 𝐖(2) 𝐖(3)

Useful for homophilic graphs !

Graph Neural Networks

Thomas N. Kipf & M. Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017 7



Questions: 
1- How to apply GCN on heterophilic graphs?
2- How to have long-distance communication between nodes with GCN?

GCN with higher-order layers
The models is prone to oversmoothing

Challenges…

Image by: Fariba Karimi
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• Message-passing based approaches are prone to oversmoothing
• GNNs have structural limitations to apply on large-scale or heterophilic graphs!

Our Goals:
• Avoid structural limitations of the message-passing frameworks
• Facilitate information propagation by using the diffusion equation
• Ensure long-distance communication between nodes

Layer 1 Layer 2 Layer 3 Layer 4

Message-passing

Challenge

9



“TIDE: Time Derivative Diffusion for Deep Learning on Graphs,” M. Behmanesh, M. Krahn, and M. Ovsjanikov, ICML, 2023

TIDE: Time Derivative Diffusion for Deep Learning on Graphs

https://github.com/maysambehmanesh/TIDE

Maximilian Krahn Maks OvsjanikovMaysam Behmanesh

TIDE

https://github.com/maysambehmanesh/TIDE


Key idea: ensure information propagation using the diffusion equation

In the continuous setting, the diffusion process is described as the solution of the heat equation

Image from GDL-course, Ovsjanikov

= exp −𝑡Δ 𝑢0

𝑢𝑡 = ℋ𝑡(𝑢0)

𝜕𝑢

𝜕𝑡
= −Δ𝑢

TIDE

↳ Basic linear PDE

↳ Defined on graph via the Laplace-Beltrami 
operator Δ

↳ Implemented & well-studied on many domains
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Time-derivative diffusion

Main goal:
Combine the local accuracy with the global information propagation (without oversmoothing)

We propose time-derivative diffusion as a communication mechanism:

𝜕𝑢

𝜕𝑡
= −Δ𝑢 →        𝑢𝑡 = ℋ𝑡 𝑢0 = exp −𝑡𝐋 𝑢0  → −

𝜕𝑢𝑡

𝜕𝑡
= 𝐋𝑢𝑡 = 𝐋 exp −𝑡𝐋 𝑢0

TIDE

ℒ𝑘
𝑇𝐼𝐷𝐸 𝐔 = 𝜎 𝑇𝑡 𝐔 𝐖 𝑘 = 𝜎 𝐋 exp −𝑡𝑘𝐋 𝐔 𝐖𝑘

TIDE combines local accuracy with global information propagation by:
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Key idea:
Using learnable time diffusion which allows information propagation on the graph

↳ small t, the support is local and the output is concentrated at the center node
↳ larger t, the spatial support increases, facilitating distant communication between nodes

TIDE
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TIDE Architecture

Two variants of TIDE:
TIDE-m: learn 𝑡 per-channel
TIDE-s: learn a single 𝑡 for all channels 

TIDE
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Results: 
Long Range Communication 

Image and dataset by: Homophily influences ranking of minorities in social networks, Fariba Karimi, Scientific Reports, 2018

TIDE
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Results: 
Node Classification

TIDE
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Results: 
Node Classification on graphs with different homophily rates

TIDE
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1. GNNs are Limited to data-rich applications, not useful in generic tasks!

2. Lack of generalizable (transfer) learning on graph

1 2

Challenge
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Typical representation learning pipeline

How to learn informative features on unlabeled graph 
(ideally, useful in downstream applications) ? 

Contrastive Learning: powerful feature learning without labels.

Pre-training: feature learning Downstream application

Research direction 
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Major challenge:
• GCL allocates negative pairs uniformly, regardless of their proximity to the true positive.

Our Goal:
• Integration proximity information in the contrastive loss.

𝐟+

𝐟𝒊
−

𝐟𝒂

𝐟𝒋
−

𝐟𝒊
− − 𝐟+ ≫ 𝐟𝒋

− − 𝐟+  

𝜋𝑛𝑒𝑔 𝑎, 𝑖 = 𝜋𝑛𝑒𝑔 𝑎, 𝑗 = 1 

We expect:
0 < 𝜋𝑛𝑒𝑔 𝑎, 𝑗 < 𝜋𝑛𝑒𝑔 𝑎, 𝑖 < 1

Challenge
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“Graphs Smoothed Graph Contrastive Learning via Seamless Proximity Integration,” M. Behmanesh, and M. Ovsjanikov, LoG, 2024

Smoothed Graph Contrastive Learning via Seamless Proximity Integration

https://github.com/maysambehmanesh/SGCL

Maks OvsjanikovMaysam Behmanesh

SGCL

https://github.com/maysambehmanesh/SGCL


Our intuition:
Going beyond simple binary categorization of positive and negative points

SGCL

Π𝑝𝑜𝑠 ∈ 0,1 𝑁×𝑁 

Π𝑛𝑒𝑔 ∈ 0,1 𝑁×𝑁 
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Our intuition:
Going beyond simple binary categorization of positive and negative points

Π𝑝𝑜𝑠 ∈ 0,1 𝑁×𝑁 ෩Π𝑝𝑜𝑠 ∈ [0,1]𝑁×𝑁 

Π𝑛𝑒𝑔 ∈ 0,1 𝑁×𝑁 ෩Π𝑛𝑒𝑔 ∈ [0,1]𝑁×𝑁 

SGCL
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Question:
How can proximity information be effectively incorporated into contrastive loss?

Input:        
binary matrix Π ∈ {0,1}𝑁×𝑁

SGCL

24



Our Intuition:
Applying a smoothing approach for graph

Smoothing involves iteratively updating node values based on the values of their neighboring 
nodes

Input:        
binary matrix Π ∈ {0,1}𝑁×𝑁

SGCL

Output: 
smooth matrix ෩Π ∈ 0,1 𝑁×𝑁
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Smoothing approaches:
Smoothing involves iteratively updating node values based on the values of their neighboring 
nodes
1. Taubin smoothing

𝐕(𝑘+1) = 𝐈 + 𝜏𝐋 𝐈 + 𝜇𝐋 𝐕(𝑘) ,  𝜇 < 0, 𝜏 > 0, and 𝜇 < −𝜏

2. Bilateral smoothing

 𝐯𝒊 =
σ𝑗∈𝒩𝑘(𝑖) 𝑤(𝑖,𝑗)𝐯𝑗

σ𝑗∈𝒩𝑘(𝑖) 𝑤(𝑖,𝑗)
  ,   where    𝑤 𝑖, 𝑗 = exp −

𝑑𝑠𝑝𝑎 𝑖,𝑗

2𝜎𝑠𝑝𝑎
2 −

𝑑𝑖𝑛𝑡 𝑖,𝑗

2𝜎𝑖𝑛𝑡
2

3. Diffusion-based smoothing

𝐯𝑖
(𝑘+1)

= 𝐯𝑖
(𝑘)

+ 𝜂 ത𝐯𝑖
(𝑘)

, where ത𝐯𝑖
(𝑘)

= σ𝑗∈𝒩(𝑖) v𝑗

SGCL
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SGCL – Architecture 

Contrastive Loss: 

𝐂(𝑖,𝑗) : normalized cosine similarity between the embeddings

SGCL
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SGCL

Feature space analysis

Dirichlet energy 𝐸 𝐗 = 𝐗𝑇𝐋𝐗 =
1

2
σ𝑖,𝑗 𝑎𝑖𝑗 𝐱𝑖 − 𝐱𝑗

2
measures the smoothness of the signal 𝐗 

over the graph

Disparity measure:

where Δ𝑖𝑗 =
1

2
𝑎𝑖𝑗 𝑥𝑖 − 𝑥𝑗

2

✓ A lower disparity value is better
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Results: Node Classification 

SGCL
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Results: Node Classification (large scale graphs) 

SGCL
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Results: Graph Classification 

SGCL
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1- Most message-passing-based GNNs are prone to oversmoothing

↳ TIDE facilitates information propagation using the diffusion equation 
↳ TIDE ensures long-distance communication between nodes

2- Conventional GCL frameworks allocates negative pairs uniformly, regardless of their proximity

↳ SGCL incorporates the geometric structure of graph into a smoothed contrastive loss
↳ SGCL intuitively consider proximity information in assigning positive and negative pairs

 

Conclusions 
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Thank You For Your Attention

Questions?
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